4 research outputs found

    Low-power CMOS circuit design for fast infrared imagers

    Get PDF
    La present tesi de màster detalla novedoses tècniques circuitals per al disseny de circuits integrats digitals CMOS de lectura compactes, de baixa potència i completament programables, destinats a aplicacions d'IR d'alta velocitat operant a temperatura ambient. En aquest sentit, el treball recull i amplia notablement la recerca iniciada en el Projecte Final de Carrera "Tècniques de disseny CMOS per a sistemes de visió híbrids de pla focal modular" obtenint-se resultats específics en tres diferents àrees: Recerca de l'arquitectura òptima d'FPA, des del punt de vista funcional i de construcció física. Disseny d'un conjunt complet de blocs bàsics d'autopolarització, compensació de la capacitat d'entrada i del corrent d'obscuritat, conversió A/D i interfície d'E/S exclusivament digital, amb compensació de l'FPN. Aplicació industrial real: Integraciió de tres versions diferents de píxel per sensors PbSe d'IR i fabricació de mòduls ROIC monolítics i híbrids en tecnologia CMOS estàndard 0.35&·956;m 2-PoliSi4-metall. Caracterització elèctrica i òptica-preliminar de les llibreries de disseny

    Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations

    Full text link
    Field-effect transistor (FET) sensors are attractive potentiometric (bio)chemical measurement devices because of their fast response, low output impedance, and potential for miniaturization in standard integrated circuit manufacturing technologies. Yet the wide adoption of these sensors for real-world applications is still limited, mainly due to temporal drift and cross-sensitivities that introduce considerable error in the measurements. In this paper, we demonstrate that such non-idealities can be corrected by joint use of an array of FET sensors – selective to target and major interfering ions – with machine learning (ML) methods in order to accurately predict ion concentrations continuously and in the field. We studied the predictive performance of linear regression (LR), support vector regression (SVR), and state-of-art deep neural networks (DNNs) when monitoring pH from combinatorial H+, Na+, and K+ ion-sensitive FET (ISFET) sequences of readings collected over a period of 90 consecutive days in real water quality assessment conditions. The proposed ML algorithms were trained against reference online measurements obtained from a commercial pH sensor. Results show a greater capability of DNNs to provide precise pH monitoring for longer than a week, achieving a relative root-mean-square error reduction of 73% over standard two-point sensor calibration methods

    Predicting Hydration Status Using Machine Learning Models From Physiological and Sweat Biomarkers During Endurance Exercise: A Single Case Study

    Full text link
    Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the first study on predicting hydration status using machine learning models from single-subject experiments, which involve 32 exercise sessions of constant moderate intensity performed with and without fluid intake. During exercise, we measured four noninvasive physiological and sweat biomarkers including heart rate, core temperature, sweat sodium concentration, and whole-body sweat rate. Sweat sodium concentration was measured from six body regions using absorbent patches. We used three machine learning models to determine the percentage of body weight loss as an indicator of dehydration with these biomarkers and compared the prediction accuracy. The results on this single subject show that these models gave similar mean absolute errors, while in general the nonlinear models slightly outperformed the linear model in most of the experiments. The prediction accuracy of using the whole-body sweat rate or heart rate was higher than using core temperature or sweat sodium concentration. In addition, the model trained on the sweat sodium concentration collected from the arms gave slightly better accuracy than from the other five body regions. This exploratory work paves the way for the use of these machine learning models to develop personalized health monitoring together with emerging, noninvasive wearable sensor devices

    Low-power CMOS circuit design for fast infrared imagers

    No full text
    La present tesi de màster detalla novedoses tècniques circuitals per al disseny de circuits integrats digitals CMOS de lectura compactes, de baixa potència i completament programables, destinats a aplicacions d'IR d'alta velocitat operant a temperatura ambient. En aquest sentit, el treball recull i amplia notablement la recerca iniciada en el Projecte Final de Carrera "Tècniques de disseny CMOS per a sistemes de visió híbrids de pla focal modular" obtenint-se resultats específics en tres diferents àrees: Recerca de l'arquitectura òptima d'FPA, des del punt de vista funcional i de construcció física. Disseny d'un conjunt complet de blocs bàsics d'autopolarització, compensació de la capacitat d'entrada i del corrent d'obscuritat, conversió A/D i interfície d'E/S exclusivament digital, amb compensació de l'FPN. Aplicació industrial real: Integraciió de tres versions diferents de píxel per sensors PbSe d'IR i fabricació de mòduls ROIC monolítics i híbrids en tecnologia CMOS estàndard 0.35&·956;m 2-PoliSi4-metall. Caracterització elèctrica i òptica-preliminar de les llibreries de disseny
    corecore